Estimating Cosmological Parameters from the Dark Matter Distribution

نویسندگان

  • Siamak Ravanbakhsh
  • Junier B. Oliva
  • Sebastian Fromenteau
  • Layne Price
  • Shirley Ho
  • Jeff G. Schneider
  • Barnabás Póczos
چکیده

A grand challenge of the 21 century cosmology is to accurately estimate the cosmological parameters of our Universe. A major approach in estimating the cosmological parameters is to use the large scale matter distribution of the Universe. Galaxy surveys provide the means to map out cosmic large-scale structure in three dimensions. Information about galaxy locations is typically summarized in a “single” function of scale, such as the galaxy correlation function or powerspectrum. We show that it is possible to estimate these cosmological parameters directly from the distribution of matter. This paper presents the application of deep 3D convolutional networks to volumetric representation of dark-matter simulations as well as the results obtained using a recently proposed distribution regression framework, showing that machine learning techniques are comparable to, and can sometimes outperform, maximum-likelihood point estimates using “cosmological models”. This opens the way to estimating the parameters of our Universe with higher accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constraints on cosmological parameters

A cosmological model with total density close to critical (and flat geometry), dominated by dark matter and dark energy of unknown nature, and consistent with the basic predictions of the inflationary scenario is a very good fit to a variety of cosmological probes: the anisotropy of the CMB, the large scale distribution of matter, the luminosity distance of high-redshift type Ia supernovae and ...

متن کامل

Gravitational Lensing Statistics in Universes Dominated by Dark Energy

The distribution of image separations in multiply-imaged gravitational lens systems can simultaneously constrain the core structure of dark matter halos and cosmological parameters. We study lens statistics in flat, low-density universes with different equations of state w = pQ/ρQ for the dark energy component. The fact that dark energy modifies the distance-redshift relation and the mass funct...

متن کامل

ar X iv : a st ro - p h / 06 06 18 3 v 1 8 J un 2 00 6 Constraints on cosmological parameters

A cosmological model with total density close to critical (and flat geometry), dominated by dark matter and dark energy of unknown nature, and consistent with the basic predictions of the inflationary scenario is a very good fit to a variety of cosmological probes: the anisotropy of the CMB, the large scale distribution of matter, the luminosity distance of high-redshift type Ia supernovae and ...

متن کامل

Interacting Dark Matter and Dark Energy

We discuss models for the cosmological dark sector in which the energy density of a scalar field approximates Einstein’s cosmological constant and the scalar field value determines the dark matter particle mass by a Yukawa coupling. A model with one dark matter family can be adjusted so the observational constraints on the cosmological parameters are close to but different from what is predicte...

متن کامل

Cosmological Implications of Galaxy Clusters: Best-fit Models

The galaxy cluster power spectrum and mass/temperature functions are currently the most precise observational tools for constraining the theory of the formation of large scale structure (LSS) in the Universe. Complementing these tests by the observational data at larger (cosmic microwave backgroud anisortopy (CMBA)) and smaller (distribution of Lyα clouds) scales opens the way to a straightforw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016